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ABSTRACT

Ship detection in synthetic aperture radar (SAR) images is a
major issue in maritime surveillance and port management.
Existing challenges are mainly as follows: (1) Tiny ships are
mixed with scattered noise spots on the sea. (2) Ships are
present in extreme aspect-ratios and various scales. (3) The
land background blurs the outline of coastal ships. To ad-
dress these problems, we propose an efficient detection neu-
ral network (DLAHSD) that integrates the Multi-scale Fea-
ture Location Fusion (MFLF) module and the Auxiliary De-
tection Head (ADH) based CenterNet. In addition, we de-
signed a Dynamic Elliptic Gaussian (DEG) module to label
the heatmap of ships. Experimental results on the challenging
SSDD dataset show that our model offers improved perfor-
mance over the baseline methods. The codes will be available
at https://github.com/SYLan2019/DLAHSD.

Index Terms— Ship detection, Multi-scale Feature Lo-
cation Fusion, Auxiliary Detection Head, Dynamic Ellipse
Gaussian, SSDD dataset

1. INTRODUCTION

Synthetic Aperture Radar (SAR) is an active imaging device
that can operate day and night and is not affected by weather
conditions [1, 2]. Because of its ability to provide indepen-
dent and all-weather monitoring of solar illumination, space-
borne SAR systems like Sentinel-1 [3] and TerraSAR-X [4]
have produced a substantial number of high-resolution SAR
images. These images are particularly useful for ship detec-
tion in marine traffic monitoring and port management due to
the unique characteristics of the SAR images.

The objective of ship detection in SAR images is to locate
ships in the scene. Despite significant efforts in this field, the
issue has not been fully resolved due to the subtle SAR imag-
ing mechanism. In SAR images, ships can be difficult to dis-
tinguish, as they may be mixed with the background. Many
ship detection algorithms have been proposed, among which
constant false alarm rate (CFAR) and its variations are widely
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Fig. 1. Ships are densely parked in parallel at the port, mixed
with the boundary of the land background, which are rather
difficult to be detected. In addition, the scattered noise on the
sea surface is very similar to that of small ships, which in-
evitably leads to false detection. Our method addresses these
challenges and achieves better results than the baselines.

adopted [5, 6]. These algorithms rely on manually designed
geometric and texture features, which can be time-consuming
to obtain, and tend to produce inaccurate predictions in com-
plex scenarios.

In recent years, CNN-based deep learning techniques
have been used for ship detection, where features are learned,
thus enhancing the representation robustness of human-
engineered features used in traditional algorithms. Further-
more, attention mechanisms are often used to enhance the
learned features. For example, attention panels are connected
with a feature pyramid network [7]. SAGAN [8] used an
attention module in skip connection to capture additional
local information. However, these attention mechanisms
can not adequately handle the information redundancy be-
tween feature channels when they are used for ship detection
from SAR images. As for detectors in the SAR images, the
CenterNet [9], as a representative anchor-free detector, is
superior in terms of computational efficiency and detection
accuracy. TTFNet [10] encoded training samples by using
elliptic Gaussian kernels for better accuracy and training
speed. OSD-SSD [11] proposed some pretraining techniques
to transfer the characteristics of ships in earth observations to



Fig. 2. Overview of the DLAHSD structure. DLAHSD has three major components. The MFLF enhances the region of interest
first, then performs a multi-scale fusion. The ADH decodes the coarse feature map, and feeds the final refined feature map to
the detection head. The DEG component is a dynamic elliptic Gaussian algorithm for heatmap labeling.

SAR images. EESD [12] combined grid-refined anchor boxes
and multi-scale feature fusion to improve ship detection in
SAR images with complex scenes. These methods have con-
tributed greatly to SAR image detection, but still face many
challenges, such as the confusion between scattered noise and
small ships, or the tight adhesion between ships (as shown in
Fig. 1).

To address the aforementioned challenges, we propose an
efficient anchor-free network called DLAHSD. First, we in-
troduce a novel Multi-scale Feature Location Fusion (MFLF)
module that highlights the position of ships and fuses infor-
mation from feature maps of different sizes to enable the de-
tection of ships of various scales. Second, we design an Aux-
iliary Detection Head (ADH) that incorporates an additional
coarse loss, further refining the final feature map and im-
proving the overall performance. Finally, we propose the use
of a Dynamic Elliptic Gaussian (DEG) kernel to label the
heatmap, reducing the overlap between ships. We conduct
ablation experiments on the challenging SSDD dataset [13] to
demonstrate the advantages of DLAHSD over existing meth-
ods.

2. METHODOLOGY

Our network, DLAHSD, is comprised of three main compo-
nents, as illustrated in Figure 2. The first component is the
Multi-scale Feature Location Fusion (MFLF) module, which
improves the region of interest for each stage feature map
and performs coarse-grained fusion of the feature maps. The
second component is the Auxiliary Detection Head (ADH),
which decodes the shallow feature map and introduces an ad-
ditional loss to further refine the final feature map for better
performance. Lastly, the Dynamic Elliptical Gaussian (DEG)
is utilized as a heatmap labeling algorithm to better fit the dis-
tribution of ships and reduce interference among ships.

2.1. Multi-scale Feature Location Fusion

The Multi-scale Feature Location Fusion (MFLF) module is
proposed to address the limitations of ship detection at var-
ious scales. In CenterNet [9], only the feature map from
the last stage of the backbone network is used, which may
lack the representation of multi-scale targets features. To en-
hance the spatial region of interest and fuse the channel of
feature maps, we designed the Squeeze Coordinate Atten-
tion (SCA) module, inspired by Coordinate Attention (CA)
[14] but with some modifications to address its limitations
in our module. On the basics of Coordinate Attention [14],
we added a 3 × 3 convolution to squeeze channels of origi-
nal feature map. Then multiply it with the channel attention
mapping map of the two spatially directions of original fea-
ture map, to preserve certain essential information between
channels. Figure 3 shows the implementation details of the
SCA sub-module.

Fig. 3. Squeeze Coordinate Attention (SCA) sub-module.
This mechanism enhances the presentation of the region of
interest (ROI), via squeezing and fusing the information from
the input channel.

We select feature maps C1, C2, C3 from the last three
stages of ResNet50 and apply the SCA operation to obtain
K1, K2, K3. We then upsample and merge them from the
bottom to the top. The upsample process uses the Deconv
module, which consists of a 3×3 deformable convolution [15]
and a 4 × 4 transposed convolution. This approach enables
the network to better focus on ships at different scales. The



details of the MFLF are as follows:

Ki = SCA(Ci) (i = 1, 2, 3)

P1 = Deconv1(K3) +K2, P2 = Deconv2(P1) +K1

Output = Deconv3(P2)

Deconv(X) = F ′(Upsample(X))

(1)

where F ′(·) is a 3×3 deformable convolution. Upsamle(·) is
a 4×4 transposed convolution. P1 and P2 is the intermediate
feature map. SCA(·) is formulated as follows:
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X̃ = BN(Conv3×3(X)) (4)

Yc(i, j) = X̃c(i, j)× ghc (i)× gwc (j) (5)

where X ∈ RC×W×H is the input feature map. Xc is the
spatial feature of the cth channel. F1 is a 1×1 convolution for
channel reduction. δ is the non-linear activation function. σ is
the Sigmoid function. Fh, Fw are also 1× 1 convolution used
to maintain current channel numbers. Conv3×3(·) reduces
the number of channels to C

4 .

2.2. Auxiliary Detection Head

The texture details in SAR images are often poor, making
it difficult to distinguish the boundaries of ships, especially
when they are closely aligned or berthed near the port and
mixed in with the land. To address this issue, we drew inspira-
tion from the auxiliary head introduced in YOLOv7 [16]. As
shown in Figure 4, we propose an Auxiliary Detection Head
(ADH) to carry out rough detection in advance and introduce
an additional coarse loss (i.e., Losscoarse). The coarse loss
denotes the difference between the output of ADH and la-
bel, which can be used to guide the shallow network weights
(i.e.m F1) learning. Different from the YOLOv7, our auxil-
iary head is not used in the middle layers of the network, but
the penultimate layer. Furthermore, our ADH does not need
extra auxiliary label that is used in YOLOv7. So, we can get
the total loss as follows:

Losstotal = Losscorase + λ · Lossfine (6)

Loss =

W∑
i=0

H∑
j=0

GL(Yi,j , ˆYi,j) +
λ1

Npos

Npos∑
i=0

L1(Lwh, ˆLwh) +
λ2

Npos

Npos∑
i=0

L1(s, ŝ)

(7)

Fig. 4. The Auxiliary Detection Head module. The fea-
ture map F1 on the left is used to coarsely calculate the loss
Losscoarse, while the feature map F2 on the right is used to
accurately calculate the loss Lossfine.

GF (x, x̂) =

{
− lg x̂ · (1− x̂)α, if x = 1
− lg (1− x̂) · x̂α · (1− x)γ , otherwise

(8)

where we set λ to 0.3. the Lossfine is obtained from the Cen-
terNet Head. Lossfine and Losscoarse are defined the same
as Loss. GL is the Gaussian focal loss [17]. The Ŷ is the pre-
dicted heatmap. The ˆLwh is the predicted width and height. ŝ
is the predicted offset. Npos is the numbers of positive sam-
ples. λ1 and λ2 are set to 0.1. α is set to 2. γ is set to 4.

2.3. A novel heatmap labelling method

Ship detection is particularly challenging for ships with ex-
treme aspect ratios. The CenterNet uses a Circle Gaussian to
label the heatmap, but when ships are densely arranged, there
is interference between each Gaussian distribution, resulting
in multiple positive samples for a single ship, which can sig-
nificantly impact detection accuracy. To address this issue,
we propose the Dynamic Elliptic Gaussian (DEG) method,
which takes into account the area and aspect ratio of each
ground truth (GT) box. We design a Gaussian kernel dynami-
cally based on each GT box’s characteristics. Specifically, for
each GT box with its center point p ∈ (W,H), we generate a
heatmap label Y ∈ [0, 1]1×

W
4

H
4 and a Gaussian kernel Y(x,y)

to calibrate the heatmap. The kernel centroid p̃ = ⌊p/4⌋ is lo-
cated in the heatmap label Y, and we use the Gaussian kernel
to complete the calibration. Figure 5 below shows a compar-
ison of DEG with other Gaussian kernels. The DEG details
are as follows:

ratioiwh =
max(Wi, Hi)

min(Wi, Hi)
(9)
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where σx, σy is the dynamic standard deviation in both x and
y dimensions for each GT box. ratioiwh is the aspect-ratio of
the ith GT box. Wi, Hi are the width and height of the ith GT
box. α, β are hyperparameters.

(a) Circle Gaussian (b) Elliptic Gaussian (c) proposed DEG

Fig. 5. Comparasion with different heatmap labeling strate-
gies. The Gaussian distribution of ships cannot be too large or
too small. Therefore DEG took into account the area and as-
pect ratio of ship to design the Gaussian kernel dynamically.
The Gaussian distribution is more fused. Obviously the in-
terference between ship Gaussian distributions is weakened,
which benefits for improving model robustness

3. EXPERIMENTS

3.1. Dataset and metrics
We implemented our approach using PyTorch and the MMde-
tection toolkit. Our approach was trained and evaluated on
the SSDD dataset [13], which contains 1160 images and 2456
ships, with images of varying sizes. Prior to training, we pre-
processed the image sizes to 512× 512. The dataset was ran-
domly divided into a training set, a validation set, and a test
set in an 8:1:1 ratio.

3.2. Experimental Results and Analysis
Considering the balance between speed and precision, we
have selected several single-stage baselines to compare with
DLAHSD. These baselines include SSD512 [18], Center-
Net [9], FCOS [19], YOLOv3 [20], ATSS [21], VFNet [22],
YOLOX [23], OSD-SSD [11] and EESD [12]. The main met-
rics we used to compare these methods are AP, parameters,
and FPS, which are shown in Table 1.

It is evident that our DLAHSD achieves the highest AP.
In Table 2, we perform an ablation experiment on the SSDD
dataset. With the addition of the MFLF module, our detector
can now more accurately identify and focus on ships of dif-
ferent scales, further improving its capabilities. So, while the
AP@0.5 has improved significantly, there hasn’t been much
improvement in the AP@0.75 metric. Next, we tried feeding
the coarse feature map to ADH, which introduced additional
coarse loss during training. So the ADH heightened the per-
formance. Building upon these improvements, we utilized
DEG for heatmap labelling. The results obtain a significant
improvement in the AP@0.75 metric. Figure 6 shows the AP
line chart for different α and β values selected by DEG in
DLAHSD.

Table 1. Experimental results of DLAHSD and baselines
Method backbone AP(%) AP@0.5(%) AP@0.75(%) FPS Parameters(M)

SSD VGG16 64.3 94.3 75.4 43.8 24.39

Yolov3 DarkNet-53 42.5 89.8 30.3 55.1 61.52

CenterNet ResNet50 52.2 89.6 56.2 78.1 30.68

Fcos ResNet50 54.5 88.2 63.0 47.3 31.84

VfNet ResNet50 36.3 65.3 37.0 37.4 34.28

Atss ResNet50 60.2 92.1 69.0 44.4 31.89

YoloX CSPDarknet 64.5 95.2 80.3 71.5 8.94

OSD-SSD VGG16 - 96.1 - - -

EESD DarkNet-53 - 95.5 - - -

DLAHSD ResNet50 64.8 96.3 79.1 52.3 39.41

Table 2. Ablation experiments on the SSDD dataset.
MFLF ADH DEG AP(%) AP@0.5(%) AP@0.75(%) FPS Parameters(M)

✘ ✘ ✘ 53.1 88.2 55.9 78.1 30.68
✔ ✘ ✘ 55.1 95.2 58.7 53.7 38.32
✔ ✔ ✘ 60.2 96.1 61.3 53.7 39.41
✔ ✔ ✔ 64.8 96.3 79.1 52.3 39.41

MFLF, ADH and DEG modules all have performance im-
provements for the network. Figure 6 shows AP line chart for
different α and β selected by DEG in DLAHSD.

Fig. 6. The AP line chart of different α and β. We get the best
AP when α=0.6 and β=3.

4. CONCLUSION

We have presented a novel and effective detector called
DLAHSD. In the DLAHSD, the MFLF module can effec-
tively focus on ships of various sizes under complex back-
ground, by accurately capturing the multi-scale dependence
in the image. The ADH module calculates coarse losses from
shallow features, which can refine network parameters learn-
ing by optimizing the total loss. The DEG module takes into
account the area and aspect-ratio of the ship, and dynamically
generates Gaussian kernel according to the characteristics
of each ground truth box, thus obtaining it’s accurate heat-
map label. The experimental results of the DLAHSD on the
SSDD dataset achieve a competitive performance compared
to baselines.
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